Categories |
|
---|---|
Website | opencv.org |
Details $ |
Categories |
|
---|---|
Website | tensorflow.org |
Details $ |
Based on our record, OpenCV should be more popular than TensorFlow. It has been mentiond 50 times since March 2021. We are tracking product recommendations and mentions on various public social media platforms and blogs. They can help you identify which product is more popular and what people think of it.
Data analysis involves scrutinizing datasets for class imbalances or protected features and understanding their correlations and representations. A classical tool like pandas would be my obvious choice for most of the analysis, and I would use OpenCV or Scikit-Image for image-related tasks. - Source: dev.to / 3 months ago
You might be able to achieve this with scripting tools like AutoHotkey or Python with libraries for GUI automation and image recognition (e.g., PyAutoGUI https://pyautogui.readthedocs.io/en/latest/, OpenCV https://opencv.org/). Source: 3 months ago
- [ OpenCV](https://opencv.org/) instead of YoloV8 for computer vision and object detection. Source: 7 months ago
I came across a very interesting [project]( (4) Mckay Wrigley on Twitter: "My goal is to (hopefully!) add my house to the dataset over time so that I have an indoor assistant with knowledge of my surroundings. It’s basically just a slow process of building a good enough dataset. I hacked this together for 2 reasons: 1) It was fun, and I wanted to…" / X ) made by Mckay Wrigley and I was wondering what's the easiest... Source: 7 months ago
You also need C++ if you're going to do things which aren't built in as part of the engine. As an example if you're looking at using compute shaders, inbuilt native APIs such as a mobile phone's location services, or a third-party library such as OpenCV, then you're going to need C++. Source: 9 months ago
Converting the images to a tensor: Deep learning models work with tensors, so the images should be converted to tensors. This can be done using the to_tensor function from the PyTorch library or convert_to_tensor from the Tensorflow library. - Source: dev.to / about 1 year ago
So I went to tensorflow.org to find some function that can generate a CSR representation of a matrix, and I found this function https://www.tensorflow.org/api_docs/python/tf/raw_ops/DenseToCSRSparseMatrix. Source: over 1 year ago
Can anyone offer up an explanation for why there is a performance difference, and if possible, what could be done to fix it. I'm using the installation guidelines found on tensorflow.org and installing tf2.7 through pip using an anaconda3 env. Source: almost 2 years ago
I don't have much experience with TensorFlow, but I'd recommend starting with TensorFlow.org. Source: almost 2 years ago
I have looked at this TensorFlow website and TensorFlow.org and some of the examples are written by others, and it seems that I am stuck in RNNs. What is the best way to install TensorFlow, to follow the documentation and learn the methods in RNNs in Python? Is there a good tutorial/resource? Source: almost 2 years ago
Scikit-learn - scikit-learn (formerly scikits.learn) is an open source machine learning library for the Python programming language.
PyTorch - Open source deep learning platform that provides a seamless path from research prototyping to...
Pandas - Pandas is an open source library providing high-performance, easy-to-use data structures and data analysis tools for the Python.
NumPy - NumPy is the fundamental package for scientific computing with Python
Keras - Keras is a minimalist, modular neural networks library, written in Python and capable of running on top of either TensorFlow or Theano.
Dataiku - Dataiku is the developer of DSS, the integrated development platform for data professionals to turn raw data into predictions.